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1 Research Context and Problem Statement

1.1 Research Context

The application of machine learning techniques to solve complex problems within
the field of computer graphics is an emerging trend. One of the most important
concepts taken from machine learning has been differentiation, which is the pro-
cess of taking the derivative of a function. In machine learning, differentiation
is how many machine learning models learn. By calculating the derivative of
a model’s loss function, we can adjust the model to reduce error and improve
accuracy. This idea of utilizing differentiation for computer graphics rendering
tasks is called differentiable rendering.

While there are many examples demonstrating the intersection of machine
learning and computer graphics via differentiable rendering, many of them are
limited by ill-suited developer tools and programming languages. Developers
are often forced to choose between a system designed for machine learning or a
system designed for computer graphics. Machine learning languages and frame-
works contain many features that make them developer-friendly. For example,
many have automatic differentiation, which differentiates a model without the
need for manual derivation from a developer. These conveniences liberate pro-
grammers from the intricacies of mathematics, allowing them to concentrate on
model architecture. However, these systems are not optimized for rendering,
leading to poor training and render performance. Programming languages used
in computer graphics, on the other hand, are more performant due to their
faster rendering. However, they lack machine learning and general developer
conveniences, making them difficult to use, learn, and maintain. In short, while
specialized systems exist designed for either machine learning development or
computer graphics, it is difficult to satisfy both simultaneously.

Slang

To reconcile this disparity, Yong He et al. created a new programming lan-
guage called Slang [3][1]. Slang was designed with 2 primary goals: perfor-
mance and developer productivity. Table 2 shows the comparison of Slang
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against other systems. In terms of performance, Slang is optimized for ren-
dering, allowing it to match the performance of most other computer graphics
systems, such as CUDA. From a developer productivity perspective, Slang has
auto-differentiation features that aim to enable programmers to implement dif-
ferentiable rendering algorithms without needing to hand-derive functions. Ad-
ditionally, Slang implements best practices like code modularity from popular
general-purpose coding languages like C++, that enhance code maintainability
and extensibility. All this makes Slang extremely promising for differentiable
rendering applications.

Slang CUDA PyTorch and
TensorFlow

Optimized
Rendering

Ë Ë é

Auto
Differentiation

Ë é Ë

Code
Modularity

Ë é Ë

Table 1: Language and Framework Features

Image View Synthesis

One such differentiable rendering application is Image View Synthesis. Image
view synthesis is the process of generating new images from a scene given a
sparse set of input photos. For example, as illustrated in Figure 1, when provided
with a set of input images of a stuffed animal, we can generate images of the
stuffed animal from every angle around a 360-degree view, including perspectives
that were not originally captured. Many image view synthesis techniques have
been found by adopting machine learning techniques.

Figure 1: Image View Synthesis
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Figure 2: Overview of NeRF

One notable method is Neural Radiance Field (NeRF) [6]. A general overview
of NeRF is shown in Figure 2. Given input photos of a scene the algorithm gen-
erates a neural network which can be represented as a function f(x, y, z, θ, ϕ).
The inputs of this function are coordinates of a point in the scene x, y, and z
and viewing angles θ and ϕ. The function outputs the radiance, which can be
thought of as the RGB color, and volumetric density, which can be thought of as
transparency. This function is then trained on our input images, which requires
us to differentiate the function f(x, y, z, θ, ϕ). Once the scene is trained, we can
now feed novel points and viewing angles to generate new images. Inspired by
methods used in NeRF, various view synthesis algorithms have been created.
The two we will examine are Plenoxels and Gaussian Splatting.

Plenoxles [9] differs from NeRF as it uses a special voxel grid, the 3D equiv-
alent of a pixel, to represent a scene rather than a neural network. Each voxel
contains color and volumetric density data. These properties are defined by the
input images provided and refined through differentiation, similar to how the
neural network in NeRF is refined. Once training is complete, we can render
the scene in the same way as NeRF.

Another approach to image view synthesis is 3D Gaussian Splatting [4].
Simply put, a 3D Gaussian is a colored oval that becomes more transparent
toward its edges. If you’re familiar, think of a Gaussian blur. The scene can be
represented by these 3D Gaussians. The shape and properties of these Gaussians
are refined through differentiation based on the input images. These Gaussians
can then be used to generate new images.

Each of these view synthesis algorithms has implementations in different
languages and frameworks. NeRF is implemented with PyTorch and Tensor-
Flow, Plenoxels with PyTorch, and Gaussian Splatting with CUDA. Due to the
limitations of these systems, these implementations have compromises leading
to stifled performance or increased code complexity.
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1.2 The Problem

Slang has the potential to accelerate the research of differentiable rendering
algorithms, similar to how PyTorch did for general machine learning [8], but it is
a very new language. While the papers on Slang [1][3] showcase the language’s
potential for increasing performance and developer productivity in computer
graphics applications, there is a lack of peer reviewed work to validate those
results. As a result there is not much credibility, outside the original papers
[1][3], that would lead to widespread adoption. The goal of our research is
to see if we can verify the results of the original Slang papers, we will utilize
the problem of image view synthesis to evaluate Slang’s capabilities in terms
of performance and developer productivity, compared with other programming
languages.

2 Proposed Solution

The purpose of our research is to test how well Slang meets its goals of per-
formance and developer productivity [3]. We are particularly interested in its
utility in differentiable rendering, as Slang is one of the few languages with ef-
ficient rendering and auto differentiation. If our findings affirm the conclusions
of the Slang papers [3][1], our research would give credibility to the language’s
advantages and adoption. If our findings contradict the conclusions of the Slang
papers [3][1], we hope to provide insight into why and how the language could
improve in the future. As a result, we propose three tests that we will use
to evaluate Slang’s training performance, render performance, and support for
developer productivity.

To test the effectiveness of Slang, we plan to use the problem of image view
synthesis. Image view synthesis has a few properties that make it appealing for
our experiment.

• Image view synthesis has many well-established solutions that rely on
differentiable rendering.

• There are image view synthesis algorithms implemented in the program-
ming languages and frameworks we want to compare to Slang: PyTorch,
TensorFlow, and CUDA.

Our plan is to implement the image view synthesis algorithms NeRF, Plenoxels,
and Gaussian Splatting in Slang. We will then compare our Slang implemen-
tations with the pre-existing implementations of these algorithms, which are
available publicly. NeRF was originally implemented in PyTorch [10] and Ten-
sorFlow [7], Plenoxels in PyTorch [2], and Gaussian Splatting in CUDA [5].
Through this comparison, we will discover whether Slang delivers on its perfor-
mance promises.

4



Slang PyTorch TensorFlow CUDA

NeRF Implement Original Original N/A

Plenoxels Implement Original N/A N/A

Guassian
Splatting

Implement Original N/A N/A

Table 2: Image View Synthesis Algorithm Implementations

2.1 Training Performance

When measuring training performance, we want to measure how close the image
appears to the ground truth and how long it takes to train a model on a scene.

We can compare the “efficiency” of each language by comparing sample
images rendered by a model at fixed intervals of training time and observing
the qualitative differences between them. The qualitative differences will be
compared manually and through visual performance metrics PSNR, SSIM, and
LPIPS used in previous research [6] [9] [4]. While the intervals of time we train
for will depend on which view synthesis algorithm we are using, they will not
differ between languages. That way we can compare the output images and see
visually which languages lead to faster convergence. If Slang truly delivers on
its performance promises, we expect the output images to outperform PyTorch
and TensorFlow and match the performance of CUDA.

To measure how long the different language implementations will take to
train, we will train each model for a fixed number of epochs and observe how
quickly we are able to finish training on a scene. Since we are implementing the
same algorithm and training on the same data, any significant discrepancy in
total training time can be attributed to the programming language. We should
expect that Slang enables the view synthesis models to be trained faster than
PyTorch and TensorFlow and equally as fast as CUDA.

2.2 Render Performance

Measuring render performance is much simpler than training performance. After
fully training each model, we will measure how long each implementation of the
algorithm takes to fully render. Then, we can compare the outputs visually, both
manually and through PSNR, SSIM, and LPIPS. We will see which languages
perform better by seeing which language leads to an accurate output in the least
time.

Our expectations are that Slang should outperform PyTorch and Tensor-
Flow, and match CUDA. We expect that all languages will perform the same
visually. Since the algorithm does not change between the different language
implementations, neither should the output. Any visual discrepancy between
languages would signal a significant issue in render or training accuracy, either
due to implementation or the language. Where we expect the languages to differ
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is in the time taken to render. Slang should take the same amount of time to
render as CUDA, as both platforms are optimized for rendering. Slang should
also outperform PyTorch and TensorFlow as those languages are not optimized
for rendering, bottlenecked by their RAM usage.

If our Slang implementations meet the performance expectations when com-
pared to Pytorch, Tensorflow, and CUDA we can confidently support the orig-
inal Slang papers’ claims in performance [3][1]. If Slang fails to meet these
expectations, we can point to specific areas of improvement for the developers
to improve training and render performance in the future.

2.3 Developer Productivity

Evaluating how effectively a programming language can improve developer pro-
ductivity is a challenging task, as it involves the subjective experiences and per-
ceptions of the users. We can get an idea through lines of code, but that’s a very
limited perspective. Traditional methods (citation of PyTorch? ) often mea-
sure productivity based on the language’s popularity and usability experiments.
However, due to the limited resources and niche nature of Slang’s audience, it
is hard to get a large enough population to conduct these measurements. So we
propose a survey of 10 - 15 Computer Science Graduate students with Computer
Graphics experience at the University of California, San Diego. Our survey will
consist of the following questions and more:

• What is your experience with (PyTorch/TensorFlow/CUDA/Slang): None,
Beginner Intermediate or Advanced?

• Consider the following situation. You are working on a personal differen-
tiable rendering project. You will be the only person to edit this code in
the future. Which of the following languages would you use?

• Consider the following situation. You are working on a differentiable ren-
dering project for a large company. You know many people will have to
read, maintain, and extend your code in the future. Which of the following
languages would you use?

• On a scale of 1 (very difficult) to 5(very easy) how learnable are the
following languages (PyTorch/TensorFlow/CUDA/Slang)

• On a scale of 1 (very difficult) to 5(very easy) what is your experience
extending pre-existing code in the following languages: PyTorch or Ten-
sorFlow, CUDA, Slang

• On a scale of 1 (very unreadable) to 5(very readable) how readable is this
snippet of code

These questions will give insight into how Slang compares to other languages
used in differentiable rendering applications. The expected outcome is that
Slang will be preferred to CUDA but fall behind PyTorch and TensorFlow.
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In summary, we propose three methods to test the claims of the original
Slang papers [3][1]. Ultimately by either affirming or rejecting these claims, we
aim to provide insight into the language’s viability in differentiable rendering
applications.

3 Evaluation Plan

Our evaluation plan is designed to confirm the validity of our experimental
results. By showing that our tests are reliable we can affirm our conclusions
about the effectiveness of Slang in differentiable rendering applications. We
will be conducting our evaluations based on the two aspects of our proposed
solution: performance tests and developer productivity.

3.1 Performance

We will implement a series of rigorous statistical tests to validate our findings
for render performance and training performance. Our goal is to ensure that
the differences in performance metrics observed within our implementations are
statistically significant and not a byproduct of random variation.

The first is a T-Test for independent samples, which would compare the
means of the training times and rendering speed between Slang and each com-
peting framework. We hope to find whether or not there is statistically sig-
nificant evidence for Slang’s performance being better across the majority of
categories regarding differentiable rendering. In the event the conditions for
normality are not met, where our collected data is not retrieved from a random
sample that demonstrates independence or includes outliers, we will employ a
Non-Parametric U Test. We will use this Non-Parametric U Test, also known
as the Wilcoxon Rank-Sum Test, to compare the datasets as an alternative to
our previously disclosed method.

A potential shortcoming to relying solely on the T-Test for independent
samples is that it is limited to comparing the metrics of only two samples. As
a result, we will also employ ANOVA (analysis of variance) amongst all the
group means that implement the same rendering algorithm to highlight the
statistically significant differences between all of the programming systems. In
addition, we will calculate Cohen’s d to visualize the size of the differences to
provide a more comprehensive understanding of their significance.

Lastly, we will employ a 95% confidence interval to our calculated sample
means to provide a range within which we can be confident the true difference of
means amongst all datasets lies. This will allow us to quantify the uncertainty
around our sample means, allowing us to make more compelling inferences and
conclusions.

After the completion of these tests, we will graph and log our findings with
data visualization tools in Python or R-studio for a better visual understand-
ing of our findings. Some examples of which would include error mapping,
comparison graphs, as well as a breakdown of their implications. Overall, we
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employ these methodologies across multiple dimensions in order to bolster the
credibility of our findings.

3.2 Developer Productivity

In order to better understand how well Slang enables developer productivity, our
proposed survey, alongside a simple comparison of lines of code, aims to capture
the sentiment regarding Slang’s ease of use. More specifically we want to look
at developers’ attitudes towards Slang in terms of its utility in differentiable
rendering, learnability, and ease of code maintenance. We acknowledge our
sample size of 10 to 15 Computer Science Graduates is much too small for any
conclusive evidence. However, we still aim to note any interesting patterns
observed and provide a starting point for discussion. Furthermore, we will
provide an outline of tests which may be used in the future on a larger sample
to draw more conclusive results.

To analyze our results from the proposed survey, we will be conducting
hypothesis tests in order to infer our alternate hypothesis: the majority of
UCSD Graduate Students studying Computer Graphics have a positive view
of Slang in each question category. Otherwise, we will fail to reject our null
hypothesis, which would suggest that there is no significant preference for Slang
among this population. However, there is a possibility that normality will not
be met and thus verify the limitations of this survey.

Through our evaluation plan we hope to affirm the results of our performance
tests and survey. Ultimately, our goal is to test Slang’s potential and practicality
in the realm of differentiable rendering. The desired outcomes of our project are
to provide feedback on Slang and provide additional context to the computer
graphics community about its viability as a tool for both academic research and
industry applications.

3.3 Timeline

Winter Quarter 24:
Week 1-2

• Reread and analyze NeRF paper and algorithm.

• Begin the implementation of NeRF in Slang.

• Install and run pre-exisiting implementations of NeRF in PyTorch and
TensorFlow.

Week 3-4

• Collect relevant performance metrics from pre-exisiting implementations
of NeRF.

• Refine NeRF in Slang, troubleshoot issues, and start preliminary testing.

Week 5-8
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• Finalize our implementation of NeRF in Slang.

• Collect relevant performance metrics from our implementation of NeRF
in Slang.

• Perform statistical analysis on all performance metrics.

Week 9-10

• Draft and distribute the survey to collect data regarding participants’
firsthand experiences and their opinions on the overall user-friendliness of
PyTorch, TensorFlow, CUDA, and Slang.

• Additionally, gather insights on their learning experiences and the per-
ceived difficulty levels associated with using these technologies.

Spring Quarter 24:
Week 1-2

• Reread and analyze Plenoxels and Gaussian Splatting papers and algo-
rithms.

• Begin the implementation of Plenoxels and Gaussian Splatting in Slang.

• Install and run pre-exisiting implementations of Plenoxels and Gaussian
Splatting in Pytorch and CUDA.

• Analyze survey results and perform hypothesis tests if possible.

Week 3-4 - Data Analysis and Report Drafting

• Collect relevant performance metrics from pre-exisiting implementations
of Plenoxels and Gaussian Splatting.

• Refine Plenoxels and Gaussian Splatting in Slang, troubleshoot issues, and
start preliminary testing.

Week 5-8

• Finalize our implementation of Plenoxels and Guassian Splatting in Slang.

• Collect relevant performance metrics from our implementations of Plenox-
els and Gaussian Splatting in Slang.

• Perform statistical analysis on all performance metrics.

Finalization and Poster Presentation Prep
Week 9

• Finalize results and draw conclusions into a crafted summary.

• Utilize presentation skills and structure demonstrated during research lab
group meetings to outline poster presentations.
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• Prepare for poster presentation, rehearse, refine data collection, visuals,
etc.

Week 10

• Present research poster and submit accompanying work for potential fu-
ture use cases.
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