
Background

Evaluating Slang for View Synthesis
David Choi, Taiki Yoshino, Rick Rodness, Hayden Kwok

Advised By: Ravi Ramamoorthi, Tzu Mao Li

Motivation

Methodology

Results

Discussion

Slang is a new programming language boasting
both auto-differentiation and fast memory
access.

View synthesis (aka 3D reconstruction) is a field
that aims to generate 3D models from 2D images.
Many approaches (NeRF, Gaussian Splatting,
etc.) leverage insights from machine learning,
specifically optimization through differentiation.

These models are usually implemented in either
PyTorch or custom CUDA kernels. Each option
carries tradeoffs.

(from [1]):

Take 100 pictures of a drum from different views of a hemisphere. Using

the images, optimize an MLP to represent the 3D scene of the object

and render new images from arbitrary camera views.

"SLANG.D demonstrates that [...] we can
achieve a substantial advancement in
expressiveness, performance and usability
of an AD [Auto Differentiation] system" [2]

The purpose of our research is to affirm or reject

the claims of the original Slang.D paper and the

viability of Slang in differentiable rendering
applications.

The Slang.D paper claims:

To verify the performance of Slang, we implemented three view

synthesis algorithms: NeRF, InstantNGP, and 3D Gaussian

Splatting. We replaced the computationally heavy processes

with Slang. We measured the average forward pass, forward +
backward pass over 1000 iterations, and the final PSNR.

For the performance of NeRF, we found

rendering (fwd) in Slang was 4x faster than

PyTorch. However, training (fwd + bwd) in Slang

was 4x slower than in PyTorch.

Conclusion

Acknowledgments

References

Thank you to our advisors Tzu-Mao Li and Ravi

Ramamoorthi for their guidance. Additional thanks
to Javahir Abbasova, Christine Alvarado, and Lisa Huang.

In our research we could not affirm the claims of

the Slang.D paper. While there were promising

performance gains in the forward pass, code

generated with Slang’s auto diff was inferior to

PyTorch. further analysis is required.

PyTorch Profiler with TensorBoard

[1] Ben Mildenhall, et al. Nerf: Representing scenes as neural

radiance fields for view synthesis. In ECCV, 2020.

[2] Bangaru, S. P., et al. (2023). SLANG.D: Fast, Modular and Differentiable

Shader Programming. In ACM Transactions on Graphics (Vol. 42, Issue 6,

pp. 1–28). Association for Computing Machinery (ACM).

NeRF InstantNGP 3DGS
PyTorch SLANG PyTorch SLANG PyTorch SLANG*

Fwd (ms) 2.60 0.657 9.91 8.42 8.03 7.45

Fwd + Bwd
 (ms)

4.61 19.3 43.1 54.6 12.82 12.50

PSNR 21.4 20.1 22.7 22.8 22.4 22.3

We found +97% of training time was from the

backward pass generated by Slang’s auto diff.
We identified 2 plausible causes:

1. Our computation graph became too
complicated in our forward implementation

2. Slang’s auto diff is not well optimized.

Ground Truth 3DGS PyTorch 3DGS Slang*

Ground Truth I-NGP SLANGNeRF SLANGNeRF PyTorch I-NGP PyTorch

PyTorch Modules:

- Auto-diff. (easier dev.)

- Slow data access. (higher perf.)

Programmer

Self-defined CUDA Kernel:

- No auto-diff. (harder dev.)

- Fast memory access (better perf.)

SLANG:

- auto-diff. (easier dev?)

- Fast memory access (better perf?)

New
Option

PyTorch Replaced in SLANG

NeRF/InstantNGP Gaussain Splatting

Data Pre-
Processing

Position/
Hash Encoding

MLP

Volume
Rendering

Optimization

Data Pre-
Processing

Project
Gaussians

Rasterizer

Rendering

Optimization

MLP Parameters

Number of Neurons 32

Number of Layers 3

Picture size 128 x 128

Encoding Parameters

Multi-Res Level 16

Number of feature

dimensions per entry

2

Position Encoding Level 5

*We were only able to replace the projection of gaussians and the rasterizer for 3DGS in Slang so much

of our discussion and conclusions will focus on NeRF and Instant-NGP

NVIDIA Nsight Systems

