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Background Methodology

View synthesis (aka 3D reconstruction) is a field To verify the performance of Slang, we implemented three view For the performance of NeRF, we found

that aims to generate 3D models from 2D images.  synthesis algorithms: NeRF, InstantNGP, and 3D Gaussian rendering (fwd) in Slang was 4x faster than
Many approaches (NeRF, Gaussian Splatting, Splatting. We replaced the computationally heavy processes PyTorch. However, training (fwd + bwd) in Slang
etc.) leverage insights from machine learning, with Slang. We measured the average forward pass, forward + was 4x slower than in PyTorch

specifically optimization through differentiation. backward pass over 1000 iterations, and the final PSNR. |
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Take 100 pictures of a drum from different views of a hemisphere. Using 131,743 (97.5%)
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the images, optimize an MLP to represent the 3D scene of the object MLP Parameters @ void at::native::(anonymou...
and render new images from arbitrary camera views. Rasterizer
. . . Number of Neurons 32 PyTorch Profiler with TensorBoard
These models are usually implemented in either Number of Layers 3 v
PyTorch or custom CUDA kernels. Each option Picture size 128 x 128 Volume Rendering
carries tradeoffs. Rendering
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complicated in our forward implementation

Programmer I/ _____ S_L;NE: ___________ | PyTorch  SLANG ~ PyTorch  SLANG  PyTorch  SLANG* 2. Slang’s auto diff is not well optimized.
: oToi;’;n : i:tsct)-gigf;n(gfysfgcciez\;?()better . : Fwd (ms) 2.60  0.657 9.91 8.42 8.03 7.45
N e e e e = — / Fwd + Bwd 4.61 19.3 43.1 54.6 12.82 12.50
Slang is a new programming language boasting (ms) In our research we could not affirm the claims of
both auto-differentiation and fast memory PSNR 21.4 20.1 22.7 22.8 22.4  22.3  the Slang.D paper. While there were promising
ACLESS. Ground Truth  NeRFPyTorch  NeRFSLANG  I-NGPPyTorch  I-NGP SLANG performance gains in the torward pass, code

generated with Slang’s auto diff was inferior to
PyTorch. further analysis is required.
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