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Slang is a new programming language boasting 
both auto-differentiation and fast memory 
access.

View synthesis (aka 3D reconstruction) is a field 
that aims to generate 3D models from 2D images. 
Many approaches (NeRF, Gaussian Splatting, 
etc.) leverage insights from machine learning, 
specifically optimization through differentiation.

These models are usually implemented in either 
PyTorch or custom CUDA kernels. Each option 
carries tradeoffs.

(from [1]):

Take 100 pictures of a drum from different views of a hemisphere. Using 

the images, optimize an MLP to represent the 3D scene of the object 

and render new images from arbitrary camera views.

"SLANG.D demonstrates that [...] we can 
achieve a substantial advancement in 
expressiveness, performance and usability 
of an AD [Auto Differentiation] system" [2]

The purpose of our research is to affirm or reject 

the claims of the original Slang.D paper and the 

viability of Slang in differentiable rendering 
applications.

The Slang.D paper claims: 

To verify the performance of Slang, we implemented three view 

synthesis algorithms: NeRF, InstantNGP, and 3D Gaussian 

Splatting. We replaced the computationally heavy processes 

with Slang. We measured the average forward pass, forward + 
backward pass over 1000 iterations, and the final PSNR.

For the performance of NeRF, we found 

rendering (fwd) in Slang was 4x faster than 

PyTorch. However, training (fwd + bwd) in Slang 

was 4x slower than in PyTorch.
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In our research we could not affirm the claims of 

the Slang.D paper. While there were promising 

performance gains in the forward pass, code 

generated with Slang’s auto diff was inferior to 

PyTorch.  further analysis is required.
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NeRF InstantNGP 3DGS
PyTorch SLANG PyTorch SLANG PyTorch SLANG*

Fwd (ms) 2.60 0.657 9.91 8.42 8.03 7.45

Fwd + Bwd
 (ms)

4.61 19.3 43.1 54.6 12.82 12.50

PSNR 21.4 20.1 22.7 22.8 22.4 22.3

We found +97% of training time was from the 

backward pass generated by Slang’s auto diff. 
We identified 2 plausible causes:

1. Our computation graph became too 
complicated in our forward implementation

2. Slang’s auto diff is not well optimized.

Ground Truth 3DGS PyTorch 3DGS Slang*

Ground Truth I-NGP SLANGNeRF SLANGNeRF PyTorch I-NGP PyTorch

PyTorch Modules: 

- Auto-diff. (easier dev.)

- Slow data access. (higher perf.)

Programmer 

Self-defined CUDA Kernel:

- No auto-diff. (harder dev.)

- Fast memory access (better perf.)

SLANG: 

- auto-diff. (easier dev?) 

- Fast memory access (better perf?)

New 
Option

PyTorch Replaced in SLANG

NeRF/InstantNGP Gaussain Splatting

Data Pre-
Processing

Position/
Hash Encoding

MLP

Volume 
Rendering

Optimization

Data Pre-
Processing

Project
Gaussians

Rasterizer

Rendering

Optimization

MLP Parameters

Number of Neurons 32

Number of Layers 3

Picture size 128 x 128

Encoding Parameters

Multi-Res Level 16

Number of feature 

dimensions per entry

2

Position Encoding Level 5

*We were only able to replace the projection of gaussians and the rasterizer for 3DGS in Slang so much 

of our discussion and conclusions will focus on NeRF and Instant-NGP
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